Nanobiophotonics Group

Head of the Group – Prof. Marek Samoć

Group members:

Prof. Marek Samoć
Prof. Katarzyna Matczyszyn
Prof. Marcin Nyk
Prof. Hans Agren
Joanna Olesiak-Bańska, Ph.D. D.Sc.
Dominika Wawrzyńczyk, Ph.D. D.Sc.
Agnieszka Wojciechowska, Ph.D. D.Sc.
Andrzej Żak, Ph.D. D.Sc.
Amjad Ali, Ph.D.
Marco Deiana, Ph.D.
Radosław Deska, Ph.D.
Marta Dudek, Ph.D.
Leszek Mazur, Ph.D.
Patryk Obstarczyk, Ph.D.
Wojciech Piotrowski, Ph.D.
Karolina Sulowska, Ph.D.
Nina Tarnowicz-Staniak, Ph.D.
Thi Hong Quan Vu, Ph.D.
Jan K. Zaręba, Ph.D.

Ph.D Students:

Monika Bełej, M.Sc.
Kamil Bruchal, M.Sc.
Paweł Cwynar, M.Sc.
Patryk Fałat, M.Sc.
Manuela Grelich-Mucha, M.Sc.
Agata Hajda, M.Sc.
Olga Kaczmarczyk, M.Sc.
Piotr Kuich, M.Sc.
Maciej Lipok, M.Sc.
Aleksandra Matusiak, M.Sc.
Adrian Matusiak, M.Sc.
Anna Pniakowska, M.Sc.
Jastin E. Popławski, M.Sc.
Karolina Saczuk, M.Sc.
Agnieszka Siomra, M.Sc.
Maria Skrodzka, M.Sc.
Emilia Wakulska, M.Sc.
Zuzanna Walkowiak, M.Sc.

Equipment: The Institute’s laboratories have equipment available for synthesising various types of nanomaterials (quantum dots, metal-organic frameworks, plasmonic nanostructures, lanthanide-doped nanocrystals and similar). We also have a Proto AXRD powder diffractometer (XRD) and a Veeco Dimension V atomic force microscope (AFM) for characterising the structure and morphology of samples. The spectroscopic properties of the materials under study can be characterised using several UV-VIS spectrophotometers for absorption measurements (e.g. PerkinElmer Lambda 20, JASCO V-730 or JASCO V670 for measurements in the extended wavelength range up to the NIR region). The emissive properties of materials can be characterised using several stationary and portable spectrophotometers that cover emission wavelengths from the visible (JASCO FP-8550, Shimadzu HITACHI UV-3600, Ocean Optics USB 2000 and Ocean Optics QE-Pro) to the infrared (Ocean Optics NIRQuest). Emission decays can be measured using two separate, self-constructed setups: one based on the time-correlating single-photon counting technique for lifetimes between several up to 50 ns, and one based on an oscilloscope and a Hamamatsu PMT for measurements in the visible and near-infrared ranges (lifetime values in the micro- and milli-second range, which are most preferable for lanthanide-doped materials). The nonlinear optical properties of materials can be characterised using two separate femtosecond laser systems. One system consists of an Astrella Ultrafast COHERENT regenerative amplifier operating as an 800 nm pump and a TOPAS-PRIME Light Conversion BIBO crystal-based optical parametric amplifier, which is capable of producing pulses ranging from 460 nm to 2000 nm at a repetition rate of 1 kHz. The second system is a femtosecond mode-locked Ti:Sapphire laser (with a pulse width of ~100 fs and a repetition rate of 80 MHz; Chameleon, Coherent Inc.), which has a tunable incident wavelength range of λ = 700–1050 nm. The following instruments are also available: a circular dichroism spectrophotometer (JASCO J-1500) with a heating/cooling system; a differential scanning calorimeter (PerkinElmer DSC 7); a polarising microscope (Olympus BX60) with a Linkam temperature-controlled table; and a chromatography CombiFlash NextGen 300+ with UV-Vis analysis.

Recent publications:

  1. P. Obstarczyk, M. Lipok, M. Grelich-Mucha, M. Samoć, J. Olesiak-Bańska, Two-photon excited polarization-dependent autofluorescence of amyloids as label-free method of fibrils organization imaging , J. Phys. Chem. Lett., 12 (5), 1432-7 (2021); http://doi.org/10.1021/acs.jpclett.0c03511
  2. Q. Jiang, X. Yang, Xinda; P. Xiang, M. Dudek, K. Matczyszyn, M. Samoc, X. Tian, Q. Zhang, Y. Luo, D. Wang, P. Shi, Self-Assembled Heterometallic Complexes Showing Enhanced Two-Photon Absorption and Their Distribution in Living Cells, New J. Chem. 45(11), 4994-5001 (2021); https://doi.org/10.1039/D0NJ05219A
  3. J. K. Zaręba, M. Nyk and M. Samoć, Nonlinear optical properties of emerging nano- and microcrystalline  materials, Adv. Opt. Mat. 2100216 (2021); https://doi.org/10.1002/adom.202100216
  4. N. Ripoche, M. Betou, C. Philippe, Y. Trolez, O. Mongin, M. Dudek, Z. Pokladek, K. Matczyszyn, M. Samoc, H. Sahnoune, J.-F. Halet, T. Roisnel, L. Toupet, M. Cordier, G. J. Moxey, M. G. Humphrey, and F. Paul,Two-Photon Absorption Properties of Multipolar Triarylamino/Tosylamido 1,1,4,4-Tetracyanobutadienes, PhysChemChemPhys, 23, 22283-22297 (2021) https://dx.doi.org/10.1039/D1CP03346H
  5. E. Robbins, S. Leroy-Lhez, N. Villandier, M. Samoć  and K. Matczyszyn, Prospects for More Efficient Multi-Photon Absorption Photosensitizers Exhibiting Both Reactive Oxygen Species Generation and Luminescence, Molecules, 26(20), 6323(2021); https://doi.org/10.3390/molecules26206323
  6. K. C. Nawrot, M. Sharma, B. Cichy, A. Sharma, S. Delikanli, M. Samoć, H. V. Demir, M. Nyk, Spectrally Resolved Nonlinear Optical Properties of Doped vs. Undoped quasi-2D Semiconductor Nanocrystals: Copper and Silver Doping provokes strong nonlinearity in Colloidal CdSe Nanoplatelets, ACS Photonics, 9, (1), 256-267 (2022); http://dx.doi.org/10.1021/acsphotonics.1c01456
  7. I. Chaban, R. Deska, G. Privault, E. Trzop, M. Lorenc, S. Kooi, K. A. Nelson, M. Samoc, K. Matczyszyn and T. Pezeril, Nonlinear optical absorption in nanoscale films revealed through ultrafast acoustics, Nano Letters, 22(11), 4362-4367 (2022); http://dx.doi.org/10.1021/acs.nanolett.2c00771
  8. M. Gordel-Wójcik, M. Nyk, A. Bajorek, E. Zych, M. Samoć, B. Jędrzejewska, Synthesis and optical properties of linear and branched styrylpyridinium dyes in different environments, J. Mol. Liq. 356, 119007 (2022); http://dx.doi.org/10.1016/j.molliq.2022.119007
  9. M. Grelich-Mucha, M. Lipok, M. Różycka, M. Samoc, J. Olesiak-Banska,  One- and Two-Photon Excited Autofluorescence of Lysozyme Amyloids, Journal of Physical Chemistry Letters, J. Phys. Chem. Lett. 13, 4673−4681 (2022); http://dx.doi.org/10.1021/acs.jpclett.2c00570
  10. E. Robbins,  R. Deska,  K. Ślusarek, M. Samoć, L. Latos-Grażyński, B. Szyszko and K. Matczyszyn, Two-photon absorption of 28-hetero-2,7-naphthiporphyrins: expanded carbaporphyrinoid macrocycles, RSC Adv., 12, 19554–19560 (2022); http://dx.doi.org/10.1039/d2ra03167a
  11. M. Dudek, A. Kaczmarek-Kędziera, R. Deska, J. Trojnar, P. Jasik, P. Młynarz, M. Daszykowski, M. Samoć and K. Matczyszyn, Linear and nonlinear optical properties of azobenzene derivatives modified with (amino)naphthalene moiety, J. Phys. Chem. B, 126(32), 6063-6073 (2022); http://dx.doi.org/10.1021/acs.jpcb.2c03078
  12. M. Y. Tsang, P. Fałat, M. A. Antoniak, R. Ziniuk, S. Zelewski, T. Y. Ohulchanskyy, M. Samoć, M. Nyk, D. Wawrzyńczyk , Pr3+-doped NaYF4 and LiYF4 nanocrystals combining Visible-to-UVC upconversion and NIR-to-NIR downconversion for biomedical applications, Nanoscale, 14(39), 14770-14778 (2022); http://dx.doi.org/10.1039/d2nr01680j
  13. M. Gordel-Wójcik, M. Nyk, P. Śmiałek, E. F. Petrusevich, W. Bartkowiak, M. Samoć, B. Jędrzejewska, Linear and nonlinear absorption properties of hemicyanine dyes containing 5-(4H)-oxazolone as heterocyclic ring, Dyes and Pigments, 208, 110772 (2022); https://doi.org/10.1016/j.dyepig.2022.110772
  14. S. Mucha, M. Piksa, L.  Firlej, A. Krystyniak, M. Różycka, W. Kazana, K. Pawlik, M. Samoc, M. Matczyszyn, Non-toxic polymeric dots with the strong protein-driven enhancement of one- and two-photon excited emission for sensitive and non-destructive albumins sensing, ACS Applied Materials & Interfaces, 14(35), 40200-40213; http://dx.doi.org/10.1021/acsami.2c08858
  15. F. Zhang, J. Pei, A. Baev, M. Samoc, Y. Ge, H. Zhang and P. N. Prasad, Photoinduced Species in Two-dimensional Nanomaterials: Processes, Tunability and Device Applications, Phys. Repts, 993, 1-70 (2022); https://doi.org/10.1016/j.physrep.2022.09.005