Molecular Physical Chemistry Group

Head of the group – Prof. Tadeusz Andruniów

Group members:

Research Topics

  • Molecular modeling of vision processes.
  • Simulation of resonance Raman and two-photon absorption spectra of biological systems.
  • Development and applications of new methodology to evaluate catalytic and inhibitory activity.
  • Optical and nonlinear optical properties of crystals, liquid crystals and polymers
  • Holographic grating recording in azo-polymers, liquid crystals.
  • Photochromic properties of azo-polymers and phototropic liquid crystals
  • Optofluidics.
  • Manipulation of objects on a microscale using steered laser beams.
  • Simulations of physicochemical processes using COMSOL Multiphysics software.
  • Polymer surface structuring using the laser light and the structured laser beams.
  • Energy generation systems from the renewable or environmentally friendly resources.
  • Photochemistry and photophysics of prebiotically relevant systems.

Equipment: 

CAMM.PWR.EDU.PL  server hosting  CAMM  library for  aminoacid sidechain conformers, software  to  evaluate  static  and  dynamic  catalytic fields,  MED  nonempirical  scoring of inhibitory activity.

  • Laser Ar+, Innova Coherent 4W, lines from UV to Vis;
  • Laser Nd:YAG Surelite II, 10 ns, 0.5 J, 10 Hz;
  • Laser Ar+ Lexel 95;10W, lines from UV to Vis
  • Fiber lasers: λ = 405 nm, λ = 450 nm, λ = 530 nm, λ = 808 nm, λ = 1064 nm;
  • Semiconductor lasers: 372 nm, 405 nm, 465 nm;
  • Thermal imaging camera FLIR E96;
  • Inverted optical microscope Olympus IX 71;
  • Optical microscopes;
  • Atomic force microscope (AFM);
  • Spectrophotometer UV-Vis;
  • Spatial light modulator (SLM), PLUTO, Holoeye;
  • Optical coherence tomography (OCT);
  • 3D printers.
  • Single crystal X-ray diffractometer, high pressure cells, low and high temperature systems, UV-vis radiation device

Molecular Modeling  Laboratory  in room  414 A3   – 12  workstations for  students  +  server  with  Cambridge Structural Database  and molecular modelling software. 

Research projects: 

  1. NCN OPUS  grant 2017/27/B/ST4/01327 Investigation of optofluidic phenomena in liquids and soft matter employing optothermal Marangoni effect, National Science Centre (NCN) Poland, OPUS grant, UMO-2018/29/B/ST3/00829, 803 400 PLN, 2019-05-06 – 2022-05-05.
  2. Studies of photochromic materials with order imposed by liquid crystalline and polymeric structures – the new systems for photonics, NCN, OPUS grant, UMO-2014/15/B/ST8/00115, 896 000 PLN, 2015-08-03 – 2018-12-02.
  3. Study of photorefractive properties in hybrid nanophotonic systems, NCN, OPUS grant, UMO-2011/03/B/ST5/01021, 779 000 PLN, 2012-08-20 – 2014-08-1
  4. Graphene based artificial leaf (completed) – financed by National Centre of Science in Poland. This one is about CO2 reduction in a photo-electrochemical process. The graphene is functionalized with a metal complex, that facilitates the electron transfer and decreases the overpotential.
  5. Multiscale modeling for photo-electrochemical interfaces (completed) – financed by EU and NCN in Poland, carried out in collaboration within a consotrium with Dutch Institute For Fundamental Energy Research (Eindhoven, The Netherlands), Universidad Pablo de Olavide (Seville, Spain), Technische Universiteit Delft (The Netherlands) and of course us: Wrocław University of Science and Technology (Poland).
  6. Computational materials sciences for efficient water splitting with nanocrystals from abundant elements – CA18234 (ongoing). A COST action and collaborative effort of 18 countries. You can find more details on the action website (https://comp-h2o-split.eu/).
  7. Catalytic fields as tool for theoretical analysis and design of catalysts, NCN OPUS grant 2017/27/B/ST4/01327 (2 X 2018- 2 X2023), 500 515 PLN.

Recent publications:

  • Grabarek, D.; Andruniów, T. The Role of Hydrogen Bonds and Electrostatic Interactions in Enhancing Two‐Photon Absorption in Green and Yellow Fluorescent Proteins, ChemPhysChem 23, e202200003 (2022): DOI: 10.1002/cphc.202200003
  • Yang, X;  Manathunga, M.; Gozem, G.; Léonard, J.; Andruniów, T.; Olivucci, M. Quantum–classical simulations of rhodopsin reveal excited-state population splitting and its effects on quantum efficiency, Nat. Chem. 14, 441-449 (2022): DOI: 10.1038/s41557-022-00892-6
  • Machalska, E.;  Zajac, G.; Wierzba, A.J.; Kapitán, J.; Andruniów, T.; Spiegel, M.; Gryko, D.; Bouř, P.; Baranska, M. Recognition of the true and false resonance Raman optical activity, Angew. Chem. Int. Ed. 60, 21205-21210 (2021): DOI:10.1002/anie.202107600
  • Kedzierski, P ; Moskal, M ; Sokalski, WA. Catalytic Fields as a Tool to Analyze Enzyme Reaction Mechanism Variants and Reaction Steps, J.Phys.Chem.B, 125, 11606-11616 (2021) DOI:10.1021/acs.jpcb.1c05256
  • Jedwabny, W. ; Dyguda-Kazimierowicz, E. ; Pernal, K. ; Szalewicz, K. ; Patkowski, K., Extension of an Atom-Atom Dispersion Function to Halogen Bonds and Its Use for Rational Design of Drugs and Biocatalysts, J. Phys.Chem.A., 125, 1787-1799 (2021)
    DOI:10.1021/acs.jpca.0c11347
  • B. Błasiak, W. Bartkowiak and R. W. Góra, An effective potential for Frenkel excitons, Phys. Chem. Chem. Phys., 2021, 23, 1923–1935
  • Grabarek, D.; Andruniów, T. What is the Optimal Size of the Quantum Region in Embedding Calculations of Two-Photon Absorption Spectra of Fluorescent Proteins? J. Chem. Theory Comput. 16, 6439-6455 (2020): DOI: 10.1021/acs.jctc.0c00602
  • Grabarek, D.; Andruniów, T. Removing artifacts in polarizable embedding calculations of one-and two-photon absorption spectra of fluorescent proteins, J. Chem. Phys. 153, 215102 (2020): DOI: 10.1063/5.0023434
  • Beker, W and Sokalski, W.A., Bottom-Up Nonempirical Approach To Reducing Search Space in Enzyme Design Guided by Catalytic Fields, J.Chem.Theor.Comp., 16, 3420-3429 (2020): DOI:10.1021/acs.jctc.0c00139
  • Kedzierski, P. ; Zaczkowska, M. ; Sokalski, W.A., Extreme Catalytic Power of Ketosteroid Isomerase Related to the Reversal of Proton Dislocations in Hydrogen-Bond Networks, J.Phys.Chem.B, 124, 3661-3666 (2020) DOI:10.1021/acs.jpcb.0c01489
  • J. Xu, V. Chmela, N. J. Green, D. A. Russell, M. J. Janicki, R. W. Góra, R. Szabla, A. D. Bond and J. D. Sutherland, Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides, Nature, 2020, 582, 60–66.
  • K. E. Szkaradek, P. Stadlbauer, J. Šponer, R. W. Góra and R. Szabla, UV-induced hydrogen transfer in DNA base pairs promoted by dark nπ* states, Chem. Commun., 2020, 56, 201–204.
  • Chojnacka, M. ; Feliks, M. ; Beker, W. ; Sokalski, W.A., Predicting substituent effects on activation energy changes by static catalytic fields, J.Mol.Model. 24, 28 (2018)
    DOI:10.1007/s00894-017-3559-6
  • M. Bełej, K. Grześkiewicz, A. Miniewicz, Laser light-induced deformation of free surface of oil due to thermocapillary Marangoni phenomenon: experiment and computational fluid dynamics simulations, Physics of Fluids 34 (2022) 082104, https://doi.org/10.1063/5.0096610.
  • B. Krajewski, S. S. Rajput, M. Chołuj, E. Wojaczyńska, A. Miniewicz, A. Md. Mehboob, R. Zaleśny, First-order hyperpolarizabilities of propellanes: elucidating structure-property relationships, Physical Chemistry Chemical Physics 24 (2022) 13534, https://doi.org/10.1039/D2CP00381C.
  • K. Kamińska, D. Iwan, A. Iglesias-Reguant, W. Spałek, M. Daszkiewicz, A. Sobolewska, R. Zaleśny, E. Wojaczyńska, S. Bartkiewicz, Synthesis, spectroscopic and computational studies of photochromic azobenzene derivatives with 2-azabicycloalkane scaffold, Journal of Molecular Liquids 363 (2022) 119869, https://doi.org/10.1016/j.molliq.2022.119869.
  • A. Miniewicz, M. Ślemp, J. Pfleger, Organic nanocrystal fabrication using the process of resonant secod-harmonic generation of light, ACS Omega 6 (2021) 10547, https://doi.org/10.1021/acsomega.0c05156.
  • A. Miniewicz, A. Sobolewska, W. Piotrowski, P. Karpiński, S. Bartkiewicz, E. Schab-Balcerzak, Thermocapillary Marangoni flows in azopolymers, Materials 13 (2020) 2464, https://doi.org/10.3390/ma13112464.
  • H. Orlikowska, A. Sobolewska, S. Bartkiewicz, Light-responsive surfactants: photochromic properties of water-soluble azobenzene derivatives, Journal of Molecular Liquids 316 (2020) 113842, https://doi.org/10.1016/j.molliq.2020.113842.
  • K. Bujak, A. Wasiak, A. Sobolewska, S. Bartkiewicz, J. G. Malecki, J. E. Nycz, E. Schab-Balcerzak, J. Konieczkowska, A family of azoquinoline derivatives: effect of the substituent at azo linkage on thermal cis-trans isomerization based on an experimental and computational approach, Dyes and Pigments 175 (2020) 108151, https://doi.org/10.1016/j.dyepig.2019.108151.
  • A. Miniewicz, S. Bartkiewicz, E. Wojaczynska, T. Galica, R. Zalesny, R. Jakubas, Second harmonic generation in nonlinear optical crystals formed from propellane-type molecules, Journal of Materials Chemistry C 7 (2019) 1255, https://doi.org/10.1039/C8TC05268A.
  • K. Bujak, H. Orlikowska, A. Sobolewska, E. Schab-Balcerzak, H. Janeczek, S. Bartkiewicz, J. Konieczkowska, Azobenzene vs azopyridine and matrix molar masses effect on photoinduced phenomena, European Polymer Journal 115 (2019) 173, https://doi.org/10.1016/j.eurpolymj.2019.03.028.
  • A. Miniewicz, H. Orlikowska, A. Sobolewska, S. Bartkiewicz, Kinetics of thermal cis–trans isomerization in a phototropic azobenzene-based single-component liquid crystal in its nematic and isotropic phases, Physical Chemistry Chemical Physics 4 (2018) 2904, https://doi.org/10.1039/C7CP06820D.
  • J. Noga, A. Sobolewska, S. Bartkiewicz, M. Virkki, A. Priimagi, Periodic surface structures induced by a single laser beam irradiation, Macromolecular Materials and Engineering 302 (2017) 1600329, https://doi.org/10.1002/mame.201600329.
  • H. Orlikowska, A. Sobolewska, A. Miniewicz, S. Bartkiewicz, Application of the novel dynamic thermo-optical analysis for identification of the sequence of mesophases in thermotropic liquid crystal, Liquid Crystals 44 (2017) 1157, https://doi.org/10.1080/02678292.2016.1269371.
  • A. Miniewicz, C. Quintard, H. Orlikowska, S. Bartkiewicz, On the origin of the driving force in the Marangoni propelled gas bubble trapping mechanism, Physical Chemistry Chemical Physics 19 (2017) 18695, https://doi.org/10.1039/C7CP01986F.
  • K. Dradrach, S. Bartkiewicz, A. Miniewicz, Photonic vortices induced in a single-component phototropic liquid crystal, Physical Chemistry Chemical Physics 18 (2016) 3832, https://doi.org/10.1039/C5CP07030A.
  • A. Miniewicz, S. Bartkiewicz, H. Orlikowska, K. Dradrach, Marangoni effect visualized in two-dimensions optical tweezers for gas bubbles, Scientific Reports 6 (2016) 34787, https://doi.org/10.1038/srep34787.
  • J. Noga, A. Sobolewska, S. Bartkiewicz, Z. Galewski, Holographic recording in chiral and linear isomers of single-component phototropic liquid crystals: an experiment and theoretical approach. Liquid Crystals 43 (2016) 758, https://doi.org/10.1080/02678292.2016.1142014.
  • S. Bartkiewicz, A. Miniewicz, Whirl-enhanced continuous wave laser trapping of particles, Physical Chemistry Chemical Physics 17 (2015) 1077, https://doi.org/10.1039/C4CP04008B.
  • A. Sobolewska, S. Bartkiewicz, Single beam test (SBT) as a criterion for the resolution of holographic recording, Journal of Materials Chemistry  C 3 (2015)  5616, https://doi.org/10.1039/C5TC00223K
  • B. Krajewski, S. S. Rajput, M. Chołuj, E. Wojaczyńska, A. Miniewicz, A. Md. Mehboob, R. Zaleśny, First-order hyperpolarizabilities of propellanes: elucidating structure-property relationships, Physical Chemistry Chemical Physics, 24, 13534-13541 (2022).  https://doi.org/10.1039/D2CP00381C