pl
A A+ A++
A A A A

Search

Chalcogen bonds enable efficient photoreduction of sulfur-containing heterocycles

Chalcogen bonding interactions have attracted significant attention in a broad chemistry community, with a particular focus on their ability to stabilise the key transition states in various organic synthetic routes. In this work, we demonstrate that they can also be harnessed in selective photoredox reactions, which cannot be otherwise achieved with alternative approaches to photoreduction. […]

Read More…

Novel highly luminescent diketofurofuran dye in liquid crystal matrices for thermal sensors and light amplification

Research is underway to find organic dyes with high photoluminescence quantum yield (QY) and having compatibility with liquid crystals (LCs) that would be suitable for application in LC systems such as light sources, light converters and sensors. An attempt was made to obtain a highly efficient photoluminescent compound in a class of diketofurofuran (DFF) dyes. […]

Read More…

Ab initio effective one‐electron potential operators for elimination of electron repulsion integrals

In our recent paper that hit the cover of Journal of Computational Chemistry, a general method for effective one‐electron potentials (EOPs) based elimination of electron repulsion integrals is presented, that is tuned toward the fragment‐based calculation methodologies such as the second generation of the effective fragment potentials (EFP2) method. The EOP technique is applied to […]

Read More…

UV-induced hydrogen transfer in DNA base pairs promoted by dark nπ* states

Dark nπ* states were shown to have substantial contribution to the destructive photochemistry of pyrimidine nucleobases. Based on quantum-chemical calculations, we demonstrate that the characteristic hydrogen bonding pattern of the GC base pair could facilitate the formation of a wobble excited-state charge-transfer complex. This entails a barrierless electron-driven proton transfer (EDPT) process which enables damageless […]

Read More…

A prebiotically plausible synthesis of pyrimidine β-ribonucleosides involving photoanomerization

We describe a long-sought route through ribose aminooxazoline to the pyrimidine β-ribonucleosides and their phosphate derivatives that involves an extraordinarily efficient photoanomerization of α-2-thioribocytidine. In addition to the canonical nucleosides, our synthesis accesses β-2-thioribouridine, a modified nucleoside found in transfer RNA that enables both faster and more-accurate nucleic acid template-copying chemistry. Source: J. Xu, M. […]

Read More…

Distributed Multipolar Expansion Approach to Calculation of Excitation Energy Transfer Couplings

We propose a new approach for estimating the electrostatic part of the excitation energy transfer (EET) coupling between electronically excited chromophores based on the transition density-derived cumulative atomic multipole moments (TrCAMM). Our preliminary calculations show that the TrCAMM approach is capable of reproducing the exact Coulombic EET couplings accurately and efficiently and is superior to […]

Read More…